

Блок управления нагревом «БУН» СОРЭНЖ.0055.001.01

Техническое описание

Изготовлено в России

ВВЕДЕНИЕ

Настоящее техническое описание (ТО) предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием Блока управления нагревом (БУН) с версией микропрограммного обеспечения 1

В блоке управления нагревом присутствует напряжение величиной до 380В, опасное для человеческой жизни. Любые подключения к блоку и работы по его техническому обслуживанию производить только при отключенном питании прибора и исполнительных механизмов.

Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

Подключение, регулировка и техобслуживание блока должны производиться только квалифицированными специалистами, имеющими соответственную квалификационную группу по технике безопасности и изучившими настоящее ТО.

1. НАЗНАЧЕНИЕ

БУН эксплуатируется совместно с модулем ввода сигналов термопар «I-7018» и предназначен для построения автоматических систем контроля и управления нагревателями в составе термических установок «Оксид», «Изотрон», «СД.ОМ-3/100», «Октава», «HCVD-55» и подобным.

- БУН осуществляет: Фазовое управление тиристорами нагревателя по командам от управляющего комплекса верхнего уровня по трем независимым
 - Независимый, ежесекундный опрос модуля ввода с термопар «І-7018», с последующей трансляцией данных в управляющий комплекс верхнего уровня.
 - Отключение питания нагревателей по команде от управляющего комплекса верхнего уровня.
 - Аварийное отключение питания нагревателей при превышении установленной температуры (не зависимо от состояния управляющего комплекса верхнего уровня).
 - Аварийное отключение питания нагревателей при обрыве любой из термопар (не зависимо от состояния управляющего комплекса верхнего уровня).
 - Аварийное отключение питания нагревателей при отсутствии хотя бы одной из фаз питающего напряжения.
 - Аварийное отключение питания нагревателей при отсутствии связи с модулем ввода с термопар «I-7018» более 10 секунд.
 - Автоматическое отключение питания нагревателей при отсутствии связи с управляющим комплексом верхнего уровня более 20 секунд.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество каналов управления тиристорами
 Диапазон регулирования фазы
 Количество шагов регулирования
 Интерфейс обмена
 Вход датчика воды
 Выход управления силовым пускателем
 Вход обратной связи по включению пускателя

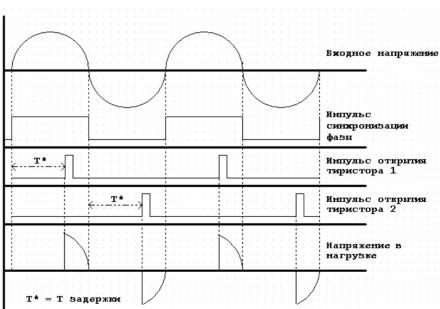
• Количество дополнительных дискретных сигналов:

Входных: 1 вход (с оптронной развязкой) Выходных: 1 выход (с оптронной развязкой)

3. ОБЩИЙ ПРИНЦИП РАБОТЫ

БУН является микропрограммным устройством и управляется с помощью микроконтроллера «АТmega128», представляющего собой восьмиразрядный микроконтроллер с RISC-архитектурой фирмы "ATMEL".

При включении питания начинается опрос модуля ввода с термопар «I-7018» посредством сети RS-485.


Управляющий комплекс верхнего уровня так же производит обмен с БУН-ом посредством сети RS-485. Обмен данными происходит через второй канал. Обмен данными представляет собой набор команд, выставляемых управляющим комплексом верхнего уровня, и ответом БУН-а.

Действуя по своей программе, БУН ежесекундно опрашивает модуль ввода с термопар «I-7018».

При поступлении команды, с текущим заданием на нагреватели, микроконтроллер преобразует текущее задание в длительность задержки на открытие тиристора и записывает эту величину в фазоимпульсный модулятор (Φ M) соответствующего канала управления.

Фазовый модулятор выполнен на базе микросхемы программируемой логики «EPM3064» фирмы "ATMEL".

При получении с синхронизатора фазы, сигнала перехода фазы через ноль, ФМ начинает отсчет времени задержки. По истечении времени задержки формируется импульс открытия соответствующего тиристора. Для повышения надежности открытия тиристора формируется на один, а два импульса.

На рисунке

проиллюстрирован принцип работы фазового регулятора.

БУН имеет собственную, микропрограммную, защиту от перегрева.

Аварийное отключение питания нагревателей произойдет, если:

- фактическая температура одного из трех младших каналов модуля I-7018 превысила установленное значение.
- обрыв одной из трех термопар, подключенных к младшим каналам модуля І-7018.
- по командам управляющего комплекса верхнего уровня.
- при отсутствии связи с модулем ввода сигналов термопар «I-7018» более 10 секунд.
- отсутствие связи с управляющим комплексом верхнего уровня более 20 секунд.
- ошибка синхронизации (частота сети хотя бы одного канала вышла за допуск ±3Гц)

4. ИНДИКАЦИЯ БУН-а

При включении питания, на экране LCD-дисплея, в течение нескольких секунд, пишется название блока, серийный номер, адрес и скорость в сети RS-485..

После на экране LCD-дисплея появляется основное окно. В этом окне отображаются основные фактические параметры, а именно фактическая температура трех зон в градусах Цельсии (цена младшего разряда -0.1 °C), задание на нагреватели (в процентах). При отсутствии связи с модулем I-7018 вместо температуры пишется **«Error °C».**

Надо понимать, что температура поступающая с модуля I-7018 — истинная, т.е. без учета коррекции вводимой в персональном компьютере, т.о. показания БУН могут отличаться от показаний в персональном компьютере на величину коррекции.

5. ПРОТОКОЛ ОБМЕНА В СЕТИ RS-485

5.1. Основные принципы обмена в сети

- Сеть имеет единственное ведущее устройство, инициирующее процесс обмена (master). Чаще всего этим устройством является компьютер. Все остальные устройства являются ведомыми (slave) узлами.
- Все операции (команды, обмен данными) производятся к однотипному обмену сообщениями.
- Адрес устройства в сети уникален. (не допускается использование двух устройств с одинаковыми адресами)
- Все модули подключенные к сети принимают посылку ведущего устройства. Каждый модуль сравнивает адрес посылки со своим собственным адресом. Модуль, чей адрес совпал с адресом посылки, принимает сообщение и выдает ответ. Модули, чьи адреса не совпали, данную посылку игнорируют.
- Каждое пришедшее сообщение должно квитироваться. Квитанция должна быть послана после задержки, большей или равной 20 мс, но не более максимального тайм-аута в 100 мс. При отсутствии квитанции от блока в течение 100 мс транзакцию приема-передачи считать сбойной.
- После посылки сообщения или квитанции посылающая сторона должна освободить линию передачи и перейти в режим приема не более чем через 1.1 мс после посылки последнего байта.
- Каждый байт передаваемого или принимаемого сообщения упаковываются по методу "тетрада-в-ASCII символ".

Так например однобайтовое шестнадцатеричное число «1В» будет представлен в виде «31» «42», где «31» - код символа 0, а «42» - код символа В

Формат команды: (Начальный символ)(Адрес)(Команда)(сг)

Формат ответа : (Начальный символ)(Данные)(сг)

(Адрес) – текущий сетевой адрес (0x00...0xFF).

(cr) – признак конца посылки (символ "return" 0x0D)

В случае недопустимой команды или данных модуль выставляет ответ в виде «?AA», где AA — сетевой адрес модуля (00...0xFF)

5.2. Набор команд

5.2.1 Команда %AANNTTCCFF

Назначение: Настроить параметры конфигурации модуля

Формат команды: **%AANNTTCCFF** (cr)

% – признак начала посылки.

АА – текущий сетевой адрес (0x00...0xFF).

NN – новый сетевой адрес (0x00...0xFF).

ТТ – в данной конфигурации отсутствует (заполняется 00)

СС – код скорости передачи модуля

06 - 9600

07 - 19200

08 - 38400

FF – в данной конфигурации отсутствует (заполняется 00)

(cr) – признак конца посылки (символ "return" 0x0D)

Пример:

Команда: **%0102000600**(cr) Ответ:!02 (cr)

! – признак начала посылки.

02 – сетевой адрес

(cr) – признак конца посылки (символ "return" 0x0D)

Команда: **%0101000700**(cr) Ответ:!01 (cr)

! – признак начала посылки.

01 – сетевой адрес

(cr) – признак конца посылки (символ "return" 0x0D)

5.2.2 Команда \$AAM

Назначение: Запросить название модуля

Формат команды: \$ААМ(сг)

\$ – признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

М – команда считывания названия модуля

(cr) – признак конца посылки (символ "return" 0x0D)

Ответное сообщение: !АА(данные)(сг)

! – признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

(данные) – название модуля

(cr) – признак конца посылки (символ "return" 0x0D)

Пример:

Команда: **\$01М**(cr) Ответ: **!01ВUN_N01_v01**(cr)

! – признак начала посылки.

01 – сетевой адрес

BUN – название модуля **N01** – серийный номер

v01 – версия микропрограммного обеспечения

(cr) – признак конца посылки (символ "return" 0x0D)

5.2.3 Команда #АА1

Назначение: Выдача задания на нагреватели

Формат команды:

#AA1(данные1)(данные2)(данные3)(данные4)(данные5)(данные6)(данные7) (сr)

- признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

1 – команда выдачи заданной скорости

(данные1) – задание на нагреватели І-ой зоны, в шестнадцатеричном виде, старший байт.

(данные2) – задание на нагреватели І-ой зоны, в шестнадцатеричном виде, младший байт.

(данные3) – задание на нагреватели ІІ-ой зоны, в шестнадцатеричном виде, старший байт.

(данные4) – задание на нагреватели II-ой зоны, в шестнадцатеричном виде, младший байт.

(данные5) – задание на нагреватели III-ей зоны, в шестнадцатеричном виде, старший байт.

(данные6) – задание на нагреватели III-ей зоны, в шестнадцатеричном виде, младший байт.

(данные 7) – байт управления

0x01 -

0х02 - Включить дискретный выход

0x04 -

0x08 -

0х10 - Включить звук

0x20 -

0x40 -

0х80 - Включить пускатель

(cr) – признак конца посылки (символ "return" 0x0D)

Ответное сообщение: >(cr)

> - признак начала посылки.

(cr) - признак конца посылки (символ "return" 0x0D)

Пример:

Команда: #01102A602360F7880 (cr)

Ответ: > (cr)

– признак начала посылки.

> – признак начала

01 – сетевой адрес посылки.

(ст) – признак конца посылки

(символ "return" 0x0D)


```
1 – номер команды
```

02А6 — два байта задания на нагреватели І-ой зоны, в шестнадцатеричном виде

0236 – два байта задания на нагреватели ІІ-ой зоны, в шестнадцатеричном виде

0F78 – два байта задания на нагреватели III-ей зоны, в шестнадцатеричном виде **80** – байт управления: Включить пускатель

(ст) – признак конца посылки

(символ "return" 0x0D)

Пример:

Команда: #01002A7015F00FD (cr) Ответ: >(cr)

– признак начала посылки.

01 – сетевой адрес посылки. (сг) – признак конца посылки

(символ "return" 0x0D)

0 - номер команды

02А7 – два байта задания на нагреватели І-ой зоны, в шестнадцатеричном виде

7015F – два байта задания на нагреватели ІІ-ой зоны, в шестнадцатеричном виде

00FD – два байта задания на нагреватели III-ей зоны, в шестнадцатеричном виде

(ст) – признак конца посылки

(символ "return" 0x0D)

5.2.4 Команда #AA2

Назначение: Запрос фактических параметров

Формат команды: #АА2(сг)

- признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

2 – команда запроса фактических параметров

(cr) – признак конца посылки (символ "return" 0x0D)

Ответное сообщение: **>(данные1)(данные2)** ... **(данные11)**(сr)

> - признак начала посылки.

(данные1) – температура 1-го входа (формат: +1234.5)

(данные2) – температура 2-го входа (формат: +1234.5)

(данные3) – температура 3-го входа (формат: +1234.5)

(данные4) – температура 4-го входа (формат: +1234.5)

(данные 5) — температура 5-го входа (формат: +1234.5)

(данныез) температура з то входа (формат. +1234.5)

(данные6) – температура 6-го входа (формат: +1234.5)

(данные7) – температура 7-го входа (формат: +1234.5)

(данные8) – температура 8-го входа (формат: +1234.5)

(данные9) – Байт ошибок 1

0х01 - нет связи с І-7018

0x02 - ошибка частоты пит. сети фазы L1

0x04 - ошибка частоты пит. сети фазы L2

0x08 - ошибка частоты пит. сети фазы L3

0x10 -

0x20 -

0x40 -

0x80 -

(данные10) – Байт ошибок 2

0х01 - обрыв термопары зоны 1

0х02 - обрыв термопары зоны 2

0х04 - обрыв термопары зоны 3

Пример:

Общество с ограниченной ответственностью «Сорэнж» Тел.:(812)934-4796 www.soreng.ru E-mail: mail@soreng.ru

```
0х08 - перегрев зоны 1
                          0х10 - перегрев зоны 2
                          0х20 - перегрев зоны 3
                          0х40 - нет связи с РС
                          0x80 -
             (данные 11) – Байт состояния дискретных входов:
                          ; 0x01 - 0
                          ;0x02 - 0
                          ; 0х04 – Вход «Вода есть»
                          ; 0x08 - Вход «Пускатель включен»
                          ; 0x10 - Вход «Дополнительный вход»
                          ; 0x20 - Индикация команды «Доп. Выход»
                          ; 0x40 - 0
                          ; 0x80 - Индикация команды «Включить Пускатель»
              (cr) - признак конца посылки (символ "return" 0x0D)
      Команда: #012 (cr)
      Other: >+1111.1+0222.2+0333.3+0444.4+0555.5 +0666.6+0777.7+0888.8000080(cr)
                    > признак начала посылки.
                    +1111.1 – фактическая температура входа 1 (в градусах С)
                    +0222.2 – фактическая температура входа 2 (в градусах С)
                    +0333.3 – фактическая температура входа 3 (в градусах С)
                    +0444.4 – фактическая температура входа 4 (в градусах С)
                    +0555.5 — фактическая температура входа 5 (в градусах C)
                    +0666.6 – фактическая температура входа 6 (в градусах С)
                    +0777.7 – фактическая температура входа 7 (в градусах С)
                    +0888.8 – фактическая температура входа 8 (в градусах С)
                    00 – Байт ошибок 1
                    00 – Байт ошибок 2
                    80 – Байт состояния дискретных входов
                    (cr) – признак конца посылки (символ "return" 0x0D)
5.2.5 Команда #AA3
Назначение: Запрос параметров наладки
Формат команды: #ААЗ(сг)
             # - признак начала посылки.
             AA – сетевой адрес (0x00...0xFF).
             3 – команда запроса параметров наладки
             (cr) – признак конца посылки (символ "return" 0x0D)
Ответное сообщение: >(данные1)(данные2) ... (данные6)(сr)
             > - признак начала посылки.
              (данные1) – Байт ошибок 1
                          0х01 - нет связи с І-7018
                          0x02 - ошибка частоты пит. сети фазы L1
                          0x04 - ошибка частоты пит. сети фазы L2
                          0x08 - ошибка частоты пит. сети фазы L3
                          0x10 -
                          0x20 -
                          0x40 -
                          0x80 -
```



```
(данные 2) – Байт ошибок 2
             0х01 - обрыв термопары зоны 1
             0х02 - обрыв термопары зоны 2
             0х04 - обрыв термопары зоны 3
             0х08 - перегрев зоны 1
             0х10 - перегрев зоны 2
             0х20 - перегрев зоны 3
             0х40 - нет связи с РС
             0x80 -
(данные 3) – Байт состояния дискретных входов:
             0x01 - 0
             0x02 - 0
             0x04 — Вход «Вода есть»
             0x08 - Вход «Пускатель включен»
             0x10 - Вход «Дополнительный вход»
             0x20 - Индикация команды «Доп. Выход = включить» включить
             0x40 - 0
             0x80 — Индикация команды «Включить Пускатель»
(данные 4) – Частота питающей сети зоны 1 в шестнадцатеричном виде.
(данные 5) – Частота питающей сети зоны 2 в шестнадцатеричном виде.
(данные 6) – Частота питающей сети зоны 2 в шестнадцатеричном виде.
(cr) - признак конца посылки (символ "return" 0x0D)
```

Пример:

Команда: #013 (сг)

Ответ: **>000080323232**(cr)

>- признак начала посылки.

00 – Байт ошибок 1

00 – Байт ошибок 2

80 – Байт состояния дискретных входов

32 – Частота питающей сети зоны 1 в шестнадцатеричном виде (0х32=50Гц)

32 – Частота питающей сети зоны 2 в шестнадцатеричном виде (0х32=50Гц)

32 – Частота питающей сети зоны 3 в шестнадцатеричном виде (0х32=50Гц)

(cr) – признак конца посылки (символ "return" 0x0D)

5.2.6 Команда ~AA0

Назначение: Выдача постоянных значений блока

Формат команды:

~AA0(данные1)(данные2)(данные3)(данные4)(данные5)(данные6)(данные7) (cr)

~ - признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

0 – команда выдачи заданной скорости

(данные1) – Температура перегрева І-ой зоны, в шестнадцатеричном виде, старший байт.

(данные2) — Температура перегрева І-ой зоны, в шестнадцатеричном виде, младший байт.

(данные3) – Температура перегрева ІІ-ой зоны, в шестнадцатеричном виде, старший байт.

(данные4) – Температура перегрева II-ой зоны, в шестнадцатеричном виде, млалший байт.

(данные5) — Температура перегрева III-ей зоны, в шестнадцатеричном виде, старший байт.

(данные6) — Температура перегрева III-ей зоны, в шестнадцатеричном виде, младший байт.

(данные7) — байт режима работы. (в данном случае заполняется нулями 0х00)

(cr) – признак конца посылки (символ "return" 0x0D)

Ответное сообщение: >(cr)

- > признак начала посылки.
- (cr) признак конца посылки (символ "return" 0x0D)

Пример:

Команда: ~01003E8044C04B000 (cr) Ответ:> (cr)

– признак начала посылки.– признак начала

01 – сетевой адрес посылки. (сг) – признак конца посылки

(символ "return" 0x0D)

0 - номер команды

03E8 — Температура перегрева І-ой зоны, в шестнадцатеричном виде (0x03E8 = 1000)

 ${f 044C}$ — Температура перегрева II -ой зоны, в шестнадцатеричном виде ($0{x}044C=1100$)

 ${f 04B0}$ — Температура перегрева III -ей зоны, в шестнадцатеричном виде (0x04B0=1200)

00 – байт режима работы.

(cr) – признак конца посылки (символ "return" 0х0D)

5.2.7 Команда ~АА1

Назначение: Запрос постоянных значений блока

Формат команды: ~АА1(сг)

~ – признак начала посылки.

AA – сетевой адрес (0x00...0xFF).

1 – команда запроса постоянных значений блока

(cr) – признак конца посылки (символ "return" 0x0D)

Ответное сообщение: **>(данные1)(данные2)** ... (данные12)(сг)

> - признак начала посылки.

(данные1) – Температура перегрева I-ой зоны, в шестнадцатеричном виде, старший байт.

(данные2) – Температура перегрева I-ой зоны, в шестнадцатеричном виде, младший байт.

(данные3) – Температура перегрева ІІ-ой зоны, в шестнадцатеричном виде, старший байт.

(данные4) – Температура перегрева II-ой зоны, в шестнадцатеричном виде, младший байт.

(данные5) – Температура перегрева III-ей зоны, в шестнадцатеричном виде, старший байт.

(данные6) – Температура перегрева III-ей зоны, в шестнадцатеричном виде, младший байт.

(данные 7) – байт режима работы. (в данном случае заполняется нулями 0х00)

(cr) – признак конца посылки (символ "return" 0x0D)

Пример:

Команда: ~011 (cr)

Other: > 30D4 32C8 31D5 00 (cr)

> – признак начала посылки.

30D4 – Температура перегрева І-ой зоны, в шестнадцатеричном виде (0х**30D4** = 12500 = 1250.0 градусов Цельсии)

32С8 – Температура перегрева II -ой зоны, в шестнадцатеричном виде (0х**32С8** = 13000 = 1300.0 градусов Цельсии)

31D5 — Температура перегрева III -ей зоны, в шестнадцатеричном виде (0x31D5 = 12757 = 1275.7 градусов Цельсии)

00 – байт режима работы.

(cr) – признак конца посылки (символ "return" 0x0D)

6. ПОДКЛЮЧЕНИЕ К БЛОКУ

В блоке управления нагревом присутствует напряжение величиной до 380В, опасное для человеческой жизни. Любые подключения к блоку производить только при отключенном питании блока и исполнительных механизмов.

Разъем XT1 (PC) – связь с персональным компьютером по интерфейсу RS-485.

Контакт (DB-9F)	Назначение
1	Вывод резистора 560 Ом, подключенного к внутреннему источнику +5В
2	DATA+(A)
3	DATA- (B)
4	Вывод резистора 560 Ом, подключенного к общему проводу внутреннего источника 5В
5	Экран

Подключение осуществляется к выводам 2 и 3. В случае сильных помех допускается установка резистора 120 Ом между выводами 2 и 3 и установка перемычек между контактами 1-2 и 3-4.

Разъем XT2 (I-7018) – связь с модулем ввода с термопар по интерфейсу RS-485.

Контакт	Назначение
(DB-9F)	
1	Выход +24В для питания І-7018
2	DATA+ (A)
3	DATA- (B)
4	Общий выход источника +24B для питания I-7018
5	Экран

Разъем XT3 (ПУСКАТЕЛЬ) – питание, контроль и управление силовым пускателем.

Контакт	Назначение
(DB-15M)	
1	Фаза питающего напряжения 1-ой зоны (от нее происходит и питание БУН)
2	
3	
4	Фаза питающего напряжения 3-ой зоны
5	
6	
7	Выход «ВКЛ. ПУСК.(L)»
8	Вход «Пускатель включен»
9	
10	Фаза питающего напряжения 2-ой зоны
11	
12	
13	Ноль сетевого напряжения
14	Выход «ВКЛ. ПУСК.(N)»
15	Вход «Пускатель включен (Общ)»

Разъем XT4 (Дискретные сигналы)

Контакт (DB-9M)	Назначение
1	Вход «Вода есть» - подключение к нормально разомкнутому контакту
	датчика воды
2	Дополнительный вход
3	
4	
5	Дополнительный выход
6	Вход «Вода есть (Общ)» - подключение к нормально разомкнутому контакту
	датчика воды
7	Дополнительный вход (Общ)
8	
9	Дополнительный выход (Общ)

Разъем XT5 (ТИРИСТОРЫ) – управление тиристорами.

Контакт	Назначение
(DB-25F)	
1	«Выход 1-1+» - подключение к управляющему электроду первого тиристора
	I зоны
2	«Выход 1-2+» - подключение к управляющему электроду второго тиристора
	I зоны
3	
4	«Выход 2-1+» - подключение к управляющему электроду первого тиристора
	II зоны
5	«Выход 2-2+» - подключение к управляющему электроду второго тиристора
	ІІ зоны
6	

Общество с ограниченной ответственностью «Сорэнж» Тел.:(812)934-4796 www.soreng.ru E-mail: mail@soreng.ru

7	«Выход 3-1+» - подключение к управляющему электроду первого тиристора
	III зоны
8	«Выход 3-2+» - подключение к управляющему электроду второго тиристора
	III зоны
9	
10	
11	Выход включения вентилятора охлаждения тиристоров (L)
12	
13	Выход включения вентилятора охлаждения тиристоров (N)
14	«Выход 1-1-» - подключение к катоду первого тиристора I зоны
15	«Выход 1-2-» - подключение к катоду второго тиристора I зоны
16	
17	«Выход 2-1-» - подключение к катоду первого тиристора II зоны
18	«Выход 2-2-» - подключение к катоду второго тиристора II зоны
19	
20	«Выход 3-1-» - подключение к катоду первого тиристора III зоны
21	«Выход 3-2-» - подключение к катоду второго тиристора III зоны
22	
23	
24	
25	Корпус

Разъем XT6 (НАГРЕВАТЕЛЬ) – светодиодная индикация работы тиристоров.

Контакт (DB-15F)	Назначение
1	Вывод нагревателя зоны 1
2	Вывод нагревателя зоны 1-2
3	Вывод нагревателя зоны 2-3
4	Вывод нагревателя зоны 3

Разработчики оставляют за собой право вносить изменения без предварительного уведомления.

По всем вопросам, касающимся использования ,
Вы можете обратиться в ООО «Сорэнж»: E-mail: mail@soreng.ru

Тел.:(812)934-4796

www.soreng.ru